String Kernels
نویسنده
چکیده
This paper provides an overview of string kernels. String kernels compare text documents by the substrings they contain. Because of high computational complexity, methods for approximating string kernels are shown. Several extensions for string kernels are also presented. Finally string kernels are compared to BOW.
منابع مشابه
Position-Aware String Kernels with Weighted Shifts and a General Framework to Apply String Kernels to Other Structured Data
In combination with efficient kernel-base learning machines such as Support Vector Machine (SVM), string kernels have proven to be significantly effective in a wide range of research areas (e.g. bioinformatics, text analysis, voice analysis). Many of the string kernels proposed so far take advantage of simpler kernels such as trivial comparison of characters and/or substrings, and are classifie...
متن کاملA Randomized String Kernel and Its Application to RNA Interference
String kernels directly model sequence similarities without the necessity of extracting numerical features in a vector space. Since they better capture complex traits in the sequences, string kernels often achieve better prediction performance. RNA interference is an important biological mechanism with many therapeutical applications, where strings can be used to represent target messenger RNAs...
متن کاملScalable Alignment Kernels via Space-Efficient Feature Maps
String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVMs in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, ...
متن کاملFast Kernels for Inexact String Matching
We introduce several new families of string kernels designed in particular for use with support vector machines (SVMs) for classification of protein sequence data. These kernels – restricted gappy kernels, substitution kernels, and wildcard kernels – are based on feature spaces indexed by k-length subsequences from the string alphabet Σ (or the alphabet augmented by a wildcard character), and h...
متن کاملFast Kernel Methods for SVM Sequence Classifiers
In this work we study string kernel methods for sequence analysis and focus on the problem of species-level identification based on short DNA fragments known as barcodes. We introduce efficient sorting-based algorithms for exact string k-mer kernels and then describe a divide-and-conquer technique for kernels with mismatches. Our algorithm for the mismatch kernel matrix computation improves cur...
متن کامل